10

Mathematics

Quarter 4 - Module 2
 (Week 2)

Calculates a Specified Measure of Position

About the Module

This module was designed and written with you in mind. It is here to help you master the skills in calculating a specified measure of position. The scope of this module permits it to be used in many different learning situations. The language used recognizes the diverse vocabulary level of students. The lessons are arranged to follow the standard sequence of the course. But the order in which you read them can be changed to correspond with the textbook you are now using.

This module is divided into two lessons, namely:
Lesson 1 - Measures of Position for Ungrouped Data
Lesson 2 - Measures of Position for Grouped Data

After going through this module, you are expected to:

1. calculate the given measure of position for ungrouped data; and
2. calculate the given measure of position for grouped data.

What I Know (Pre-Test)

Instructions: Read each item carefully. Encircle the letter of the best answer.

1. When the distribution is divided into four equal parts, each score point that describes the distribution is called \qquad _.
A. Decile
B. Percentile
C. Quantile
D. Quartile
2. It refers to data in the raw or data that you first gather.
A. Frequency Distribution
C. Grouped Data
B. Organized Data
D. Ungrouped Data
3. It is a table which shows that data arranged into different classes and the number of frequencies which fall into each class.
A. Frequency Distribution
C. Grouped Data
B. Organized Data
D. Ungrouped Data

For items 4 to 9, refer to the data below.

Given 50 multiple-choice items in Mathematics test, the scores of 10 students are the following: $35,38,48,21,18,28,46,22,43$, and 27.
4. What is the position of Q_{3} ?
A. $5^{\text {th }}$
B. $6^{\text {th }}$
C. $7^{\text {th }}$
D. $8^{\text {th }}$
5. What is the value of Q_{3} ?
A. 35
B. 38
C. 43
D. 44
6. What is the position of P_{55} ?
A. $5^{\text {th }}$
B. $6^{\text {th }}$
C. $7^{\text {th }}$
D. $8^{\text {th }}$
7. Calculate Q_{1}.
A. 22
B. 27
C. 28
D. 35
8. Calculate D_{4}.
A. 22
B. 27
C. 28
D. 35
9. Calculate P_{79}.
A. 43
B. 44
C. 46
D. 48

For items 10 to 15, refer to the data below.

Score	Frequency	Lower Boundaries	Cumulative Frequency
$46-50$	6	45.5	30
$41-45$	5	40.5	24
$36-40$	7	35.5	19
$31-35$	3	30.5	12
$26-30$	9	25.5	9

10. In solving for the $35^{\text {th }}$ percentile, the lower boundary is \qquad .
A. 25.5
B. 30.5
C. 35.5
D. 40.5
11. What class interval should be used in solving for the $1^{\text {st }}$ quartile?
A. 26-30
B. 31-35
C. $36-40$
D. $41-45$
12. What cumulative frequency should be used in solving for the $3^{\text {rd }}$ quartile?
A. 9
B. 12
C. 19
D. 24
13. Calculate the $3^{\text {rd }}$ quartile.
A. 43
B. 43.5
C. 44
D. 44.5
14. Calculate the $50^{\text {th }}$ percentile.
A. 34.75
B. 35.5
C. 36.55
D. 37.65
15. Calculate the $6^{\text {th }}$ decile.
A. 39.8
B. 38.8
C. 37.8
D. 36.8

Measures of Position for Ungrouped Data QUARTILE, DECILE AND PERCENTILE

What I Need to Know

At the end of this lesson, you are expected to:

- calculate the given measure of position for ungrouped data.

What's In

In the previous lesson lessons, you were able to learn quartile, decile and percentile.
Here are some important terms to recall. Answer the following.
\qquad 1. When a distribution is divided into four equal parts, each score point that describes the distribution is called \qquad .
\qquad 2. These are values that divide a set of data into 100 equal parts.
3. It divides the distribution into two equal parts.
4. These are values that divide a set of data into 10 equal parts. 5. It is the difference between Q_{3} and Q_{1}.

What's New

Think of it!

You are the third tallest student in a group of 10. If you are the $3^{\text {rd }}$ tallest student, therefore 7 students are shorter than you. It means that 70% of the students are shorter than you. if you are the $6^{\text {th }}$ tallest student in a group of 10, how many percent of the students are shorter than you?

- 101 Clip Art 2020, All Rights Reserved

What Is It

When a set of data is arranged from lowest to highest, the distribution can be divided into two, four, ten or a hundred equal parts. The points that are equally divided in the set of data are called quantiles. Quartiles divide the distribution into four equal parts, deciles into ten equal parts, and percentiles into one hundred equal parts.

These descriptive measures, quartiles, deciles and percentiles are called fractiles.

QUARTILE FOR UNGROUPED DATA

The quartiles are the score points which divide a distribution into four equal parts.

Median and Quartiles

Mendenhall and Sincich Method

The method of finding the quartile value.
The position of the data in the distribution is obtained by using the following formula, where n is the total number of observations.

Steps in solving quartiles using Mendenhall and Sincich Method.
Step 1. Arrange the data in ascending order.
Step 2. Locate the position of the data in the distribution.
Step 3 . Identify the location of the data and get the value.

$$
Q_{k}=\frac{k}{4}(n+1)
$$

- If L (lower quartile) falls halfway between two integers, round up, then $L^{\text {th }}$ element is the lower quartile value $\left(\mathrm{Q}_{1}\right)$.
- If U (upper quartile) falls halfway between two integers, round down, then $U^{\text {th }}$ element is the upper quartile value $\left(\mathrm{Q}_{3}\right)$.

Illustrative Examples:
Ex. 1. Using Mendenhall and Sincich Method, find the 1st quartile for the following data representing the heights (in centimeters) of 9 high school students.

$$
\begin{array}{lllllllll}
142 & 134 & 162 & 147 & 157 & 137 & 154 & 144 & 149
\end{array}
$$

Solutions:

1. First, arrange the data in ascending order.

134	137	142	144	147	149	154	157	162

2. Locate the position of the data in the distribution.

To locate the position of the data, use

$$
Q_{k}=\frac{k}{4}(n+1)
$$

Since we need to find the $1^{\text {st }}$ quartile and we have 9 given data, $\mathrm{k}=1$ and $\mathrm{n}=9$.

$$
\begin{aligned}
& Q_{1}=\frac{1}{4}(9+1) \\
& Q_{1}=\frac{1}{4}(10) \\
& Q_{1}=\frac{10}{4} \\
& Q_{1}=2.5 \approx 3
\end{aligned}
$$

If L (lower quartile) falls halfway between two integers, round up, then $L^{\text {th }}$ element is the lower quartile value $\left(\mathrm{Q}_{1}\right)$. The computed value 2.5 becomes 3 after rounding up.
3. Identify the location of the data and get the value.

$$
\begin{array}{lllllllll}
134 & 137 & 142 & 144 & 147 & 149 & 154 & 157 & 162
\end{array}
$$

The lower quartile value $\left(Q_{1}\right)$ is the $3^{\text {rd }}$ data element, thus $Q_{1}=142$.
Ex. 2. Using Mendenhall and Sincich Method, find the 3rd quartile for the following data representing the heights (in centimeters) of 10 high school students.

$$
\begin{array}{llllllllll}
142 & 134 & 162 & 147 & 157 & 137 & 154 & 144 & 149 & 150
\end{array}
$$

Solutions:

1. First, arrange the data in ascending order.

$$
\begin{array}{llllllllll}
134 & 137 & 142 & 144 & 147 & 149 & 150 & 154 & 157 & 162
\end{array}
$$

2. Locate the position of the data in the distribution, use:

$$
Q_{k}=\frac{k}{4}(n+1)
$$

Since we need to find the $1^{\text {st }}$ quartile and we have 9 given data, $\mathrm{k}=3$ and $\mathrm{n}=10$.

$$
\begin{aligned}
& Q_{3}=\frac{3}{4}(10+1) \\
& Q_{3}=\frac{3}{4}(11) \\
& Q_{3}=\frac{33}{4} \\
& Q_{3}=8.25 \approx 8
\end{aligned}
$$

If U (upper quartile) falls halfway between two integers, round down, then $U^{\text {th }}$ element is the upper quartile value $\left(\mathrm{Q}_{3}\right)$. The computed value 8.25 becomes 8 after rounding down.
3. Identify the location of the data and get the value.

$$
\begin{array}{llllllllll}
134 & 137 & 142 & 144 & 147 & 149 & 150 & 154 & 157 & 162
\end{array}
$$

The upper quartile value $\left(Q_{3}\right)$ is the $8^{\text {th }}$ data element, thus $Q_{3}=154$.

Linear Interpolation

A method in finding the quartile value when the result of Mendenhall is decimal.
Step 1. Arrange the data in ascending order.
Step 2. Locate the position of the data in the distribution.
Step 3. If the result is decimal, proceed for linear interpolation.
Steps in solving quartiles using Linear Interpolation.

1. Find the difference between the two values wherein Q_{k} is situated.
2. Multiply the result in Step 1 by the decimal part obtained in step 2.
3. Add the result in step 2 to the smaller number in step 1.

Illustrative Examples:
Ex. 1. Using Linear Interpolation, find the 1 st quartile for the following data representing the heights (in centimeters) of 9 high school students.

$$
\begin{array}{lllllllll}
142 & 134 & 162 & 147 & 157 & 137 & 154 & 144 & 149
\end{array}
$$

Solutions:

Step 1. First, arrange the data in ascending order.

$$
\begin{array}{lllllllll}
134 & 137 & 142 & 144 & 147 & 149 & 154 & 157 & 162
\end{array}
$$

Step 2. Locate the position of the data in the distribution, use:

$$
Q_{k}=\frac{k}{4}(n+1)
$$

Since we need to find the $1^{\text {st }}$ quartile and we have 9 given data, $\mathrm{k}=1$ and $\mathrm{n}=9$.

$$
\begin{aligned}
& Q_{1}=\frac{1}{4}(9+1) \\
& Q_{1}=\frac{1}{4}(10) \\
& Q_{1}=\frac{10}{4} \\
& \quad Q_{1}=2.5
\end{aligned}
$$

Step 3. If the result is decimal, proceed for linear interpolation.
$134137142 \quad 144 \quad 147 \quad 149 \quad 154$
Steps in solving quartiles using Linear Interpolation.

1. Find the difference between the two values wherein Q_{k} is situated.
Q_{1} is between 137 and 142 , therefore;

$$
\begin{aligned}
& =142-137 \\
& =5
\end{aligned}
$$

2. Multiply the result in Step 1 by the decimal part obtained in step 2.

$$
\begin{aligned}
& =5(0.5) \\
& =2.5
\end{aligned}
$$

3. Add the result in step 2 to the smaller number in step 1 .

$$
\begin{aligned}
& =2.5+137 \\
& =139.5
\end{aligned}
$$

Therefore, the value of Q_{1} is 139.5.

Ex. 2. Using Linear Interpolation, find the 3rd quartile for the following data representing the heights (in centimeters) of 10 high school students.

$$
\begin{array}{llllllllll}
142 & 134 & 162 & 147 & 157 & 137 & 154 & 144 & 149 & 150
\end{array}
$$

Solutions:

Step 1. First, arrange the data in ascending order.

134	137	142	144	147	149	150	154	157	162

Step 2. Locate the position of the data in the distribution, use:

$$
Q_{k}=\frac{k}{4}(n+1)
$$

Since we need to find the $1^{\text {st }}$ quartile and we have 9 given data, $\mathrm{k}=3$ and $\mathrm{n}=10$.

$$
\begin{aligned}
Q_{3} & =\frac{3}{4}(10+1) \\
Q_{3} & =\frac{3}{4}(11) \\
Q_{3} & =\frac{33}{4} \\
& Q_{3}=8.25
\end{aligned}
$$

Step 3. If the result is decimal, proceed for linear interpolation.

$$
\begin{array}{llllllllll}
134 & 137 & 142 & 144 & 147 & 149 & 150 & 154 & 157 & 162
\end{array}
$$

Steps in solving quartiles using Linear Interpolation.

1. Find the difference between the two values wherein Q_{k} is situated.
Q_{3} is between 154 and 157 , therefore;

$$
\begin{aligned}
& =157-154 \\
& =3
\end{aligned}
$$

2. Multiply the result in Step 1 by the decimal part obtained in step 2.

$$
\begin{aligned}
& =3(0.25) \\
& =0.75
\end{aligned}
$$

3. Add the result in step 2 to the smaller number in step 1 .

$$
\begin{aligned}
& =0.75+154 \\
& =154.75
\end{aligned}
$$

Therefore, the value of Q_{3} is 154.75 .

DECILE FOR UNGROUPED DATA

The decile are the nine score points which divides a distribution into ten equal parts.

To calculate the position of deciles, use the formula;

$$
D_{k}=\frac{k}{10}(n+1)
$$

where k is the position of the decile and n is the total number of data.

Steps in solving deciles:
Step 1. Arrange the data in ascending order.
Step 2. Locate the position of the data in the distribution. If the answer is decimal, round off to the nearest integer.
Step 3. Identify the location of the data and get the value.

Illustrative Examples:
Ex. 1. Find the 3rd decile of the following test scores of a random sample of 15 students: $22,31,24,28,47,34,40,39,30,29,17,23,32,25$ and 45.

Solutions:

Step 1. Arrange the data in ascending order.

$$
\begin{array}{lllllllllllllll}
17 & 22 & 23 & 24 & 25 & 28 & 29 & 30 & 31 & 32 & 34 & 39 & 40 & 45 & 47
\end{array}
$$

Step 2. Locate the position of the data in the distribution. If the answer is decimal, round off to the nearest integer.

Since we need to solve for the 3 rd decile and there are 10 test scores, $k=3$ and $n=15$.

$$
\begin{aligned}
\boldsymbol{D}_{\boldsymbol{k}} & =\frac{\boldsymbol{k}}{\mathbf{1 0}}(\boldsymbol{n}+\mathbf{1}) \\
D_{3} & =\frac{3}{10}(15+1) \\
D_{3} & =\frac{3}{10}(16) \\
D_{3} & =\frac{48}{10} \\
D_{3} & =4.8 \approx 5
\end{aligned}
$$

Step 3. Identify the location of the data and get the value.

$$
\begin{array}{llllllllllllll}
17 & 22 & 23 & 24 & 25 & 28 & 29 & 30 & 31 & 32 & 34 & 39 & 40 & 45 \\
47
\end{array}
$$

D_{3} is the $5^{\text {th }}$ data element, therefore, $D_{3}=25$.
Ex. 2. Find the 6 th decile of the following test scores of a random sample of 11 students: $34,40,39,42,30,29,17,23,32,25$ and 45.

Solutions:

Step 1. Arrange the data in ascending order.

$$
\begin{array}{lllllllllll}
17 & 23 & 25 & 29 & 30 & 32 & 34 & 39 & 40 & 42 & 45
\end{array}
$$

Step 2. Locate the position of the data in the distribution. If the answer is decimal, round off to the nearest integer.

Since we need to solve for the $6^{\text {th }}$ decile and there are 11 test scores, $k=6$ and $n=11$.

$$
\begin{aligned}
\boldsymbol{D}_{\boldsymbol{k}} & =\frac{\boldsymbol{k}}{\mathbf{1 0}}(\boldsymbol{n}+\mathbf{1}) \\
D_{6} & =\frac{6}{10}(11+1)
\end{aligned}
$$

$$
\begin{aligned}
& D_{6}=\frac{6}{10}(12) \\
& D_{6}=\frac{72}{10} \\
& D_{6}=7.2 \approx 7
\end{aligned}
$$

Step 3. Identify the location of the data and get the value.

$$
\begin{array}{lllllllllll}
17 & 23 & 25 & 29 & 30 & 32 & 34 & 39 & 40 & 42 & 45
\end{array}
$$

D_{6} is the $7^{\text {th }}$ data element, therefore, $D_{6}=34$.

PERCENTILE FOR UNGROUPED DATA

The percentile are the ninety-nine score points which divides a distribution into one hundred equal parts.

To calculate the position of percentiles, use the formula;

$$
P_{k}=\frac{k}{100}(n+1)
$$

where k is the position of the decile and n is the total number of data.

Steps in solving deciles:

Step 1. Arrange the data in ascending order.
Step 2. Locate the position of the data in the distribution. If the answer is decimal, round off to the nearest integer.
Step 3. Identify the location of the data and get the value.

Illustrative Examples:
Ex. 1. Find the 40th percentile of the following test scores of a random sample of 20 students: 11, 41, 23, 17, 30, 14, 10, 26, 38, 20, 34, 40, 39, 30, 29, 17, 23, 32, 25 and 45 .

Solutions:

Step 1. Arrange the data in ascending order.

$$
\begin{array}{llllllllllllllllllll}
10 & 11 & 14 & 17 & 17 & 20 & 23 & 23 & 25 & 26 & 29 & 30 & 30 & 32 & 34 & 38 & 39 & 40 & 41 & 45
\end{array}
$$

Step 2. Locate the position of the data in the distribution. If the answer is decimal, round off to the nearest integer.

Since we need to solve for the $40^{\text {th }}$ percentile and there are 10 test scores, $k=40$ and $n=20$.

$$
\begin{aligned}
\boldsymbol{P}_{\boldsymbol{k}} & =\frac{\boldsymbol{k}}{\mathbf{1 0 0}}(\boldsymbol{n}+\mathbf{1}) \\
P_{40} & =\frac{40}{100}(20+1) \\
P_{40} & =\frac{40}{100}(21) \\
P_{40} & =\frac{840}{100} \\
P_{40} & =8.4 \approx 8
\end{aligned}
$$

Step 3. Identify the location of the data and get the value.
$\begin{array}{llllllllllllllllllll}10 & 11 & 14 & 17 & 17 & 20 & 23 & 23 & 25 & 26 & 29 & 30 & 30 & 32 & 34 & 38 & 39 & 40 & 41 & 45\end{array}$
P_{40} is the $8^{\text {th }}$ data element, therefore, $P_{40}=23$.
Ex. 2. Find the 60th percentile of the following test scores of a random sample of nine students: 40, 39, 30, 29, 17, 23, 32, 25 and 45.

Solutions:

Step 1. Arrange the data in ascending order.

$$
\begin{array}{lllllllll}
17 & 23 & 25 & 29 & 30 & 32 & 39 & 40 & 45
\end{array}
$$

Step 2. Locate the position of the data in the distribution. If the answer is decimal, round off to the nearest integer.

Since we need to solve for the $40^{\text {th }}$ percentile and there are 9 test scores, $k=60$ and $n=9$.

$$
\begin{aligned}
& \boldsymbol{P}_{\boldsymbol{k}}=\frac{\boldsymbol{k}}{\mathbf{1 0 0}}(\boldsymbol{n}+\mathbf{1}) \\
& P_{60}=\frac{60}{100}(9+1) \\
& P_{40}=\frac{60}{100}(10) \\
& P_{40}=\frac{600}{100} \\
& P_{60}=6
\end{aligned}
$$

Step 3. Identify the location of the data and get the value.

$$
\begin{array}{llllllll}
17 & 23 & 25 & 29 & 30 & 32 & 39 & 40
\end{array} 45
$$

P_{60} is the $6^{\text {th }}$ data element, therefore, $P_{60}=32$.

What's More

Activity 1. NOW IT'S YOUR TURN!

A. The reaction time (in seconds) of 20 jeepney drivers for the green light are as follows:

$$
1,5,5,4,8,10,10,3,3,2,2,5,4,8,4,7,4,3,5,5
$$

Calculate the following:

1. D_{4}
2. D_{7}
3. P_{10}
4. P_{75}
B. Use linear interpolation in solving the $1^{\text {st }}$ and $3^{\text {rd }}$ quartile of the following test scores of a random 9 students:

$$
\begin{array}{lllllllll}
18 & 20 & 23 & 28 & 29 & 30 & 33 & 35 & 43
\end{array}
$$

What I Need to Remember

Quartile for Ungrouped Data

$$
Q_{k}=\frac{k}{4}(n+1)
$$

Decile for Ungrouped Data

$$
D_{k}=\frac{k}{10}(n+1)
$$

Percentile for Ungrouped Data

$$
P_{k}=\frac{k}{100}(n+1)
$$

Lesson

Measures of Position for Grouped Data QUARTILE, DECILE AND PERCENTILE

What I Need to Know

At the end of this lesson, you are expected to:

- calculate the given measure of position for grouped data.

What's In

Do you have a sharp memory?

The following are the number of years of service of 20 school teachers:

| 4 | 5 | 6 | 6 | 7 | 8 | 10 | 10 | 11 | 16 | 17 | 17 | 18 | 19 | 20 | 20 | 21 | 23 | 25 | 30 |
| :--- |
| Find: | | 1. | Q_{3} | | | $2 . \mathrm{D}_{8}$ | | | 3. | P_{70} | | | | | | | | | |

What's New

Before we calculate the given measure of position for grouped data, let us try to answer this question.

What is the difference between grouped and ungrouped data?

What Is It

Let us try to answer the previous activity.
Ungrouped data are data in the raw or data that you first gather.
Grouped data are data that has been organized into groups known as classes.

FREQUENCY DISTRIBUTION

In calculating measure of position for grouped data, we will be using frequency distribution table. A frequency distribution table is a table which shows that data arranged into different classes and the number of frequencies which fall into each class.

Quartile of Grouped Data

Recall that quartiles divide the distribution into four equal parts.
The following is used in calculating quartiles of grouped data:

$$
Q_{k}=L B+\left[\frac{\frac{k N}{4}-c f_{b}}{f_{Q_{k}}}\right] i
$$

where:

$$
L B=\text { lower boundary of } Q_{k} \text { class }
$$

$N=$ total frequency
$c f_{b}=$ cumulative frequency of the class of the class before the Q_{k} class
$f_{Q_{k}}=$ frequency of the Q_{k} class
$i=$ size of the class interval
$k=n$th quartile, where $n=1,2$ and 3
Formula to calculate the Q_{k} class
where: $\quad N=$ total frequency
$k=n t h$ quartile, where $n=1,2$ and 3

Decile of Grouped Data

Deciles are values that divide the distribution into 10 equal parts.
The following is used in calculating decile of grouped data:

$$
D_{k}=L B+\left[\frac{\frac{k N}{10}-c f_{b}}{f_{D_{k}}}\right] i
$$

where: $\quad L B=$ lower boundary of D_{k} class

$$
Q_{k} \text { Class }=\frac{k N}{4}
$$

$N=$ total frequency
$c f_{b}=$ cumulative frequency of the class of the class before the D_{k} class
$f_{D_{k}}=$ frequency of the D_{k} class
$i=$ size of the class interval
$k=$ nth quartile, where $n=1,2,3,4,5,6,7,8$ and 9
Formula to calculate the D_{k} class

$$
D_{k} \text { Class }=\frac{k N}{10}
$$

where: $\quad N=$ total frequency
$k=n t h$ decile, where $n=1,2,3,4,5,6,7,8$ and 9

Percentile of Grouped Data

Percentiles are values that divide the distribution into 100 equal parts.
The following is used in calculating percentile of grouped data:

$$
P_{k}=L B+\left[\frac{\frac{k N}{100}-c f_{b}}{f_{P_{k}}}\right] i
$$

where: $\quad L B=$ lower boundary of P_{k} class
$N=$ total frequency
$c f_{b}=$ cumulative frequency of the class of the class before the P_{k} class
$f_{P_{k}}=$ frequency of the P_{k} class
$i=$ size of the class interval
$k=n$ nth quartile, where $n=1,2, \ldots, 98$ and 99
Formula to calculate the P_{k} class
where:

$$
P_{k} \text { Class }=\frac{k N}{10}
$$

$N=$ total frequency
$k=$ nth percentile, where $\mathrm{n}=1,2, \ldots, 98$ and 99

Steps in calculating a specified measure of position for grouped data.

Step 1: Determine the lower boundaries;
Step 2: Determine the cumulative frequency;
Step 3: Calculate the given class;
Step 4: Locate the class interval where the given class is situated; and
Step 5: Calculate the value using the formula for grouped data.

Illustrative Examples

Ex. 1. Calculate the Q_{3} of the Mathematics test scores of 50 students.

Scores	Frequency
$46-50$	5
$41-45$	6
$36-40$	9
$31-35$	10
$26-30$	13
$21-25$	7

Solutions:
Step 1: Determine the lower boundaries;
To determine the lower boundary (LB), subtract 0.5 to the smallest number per class interval.

Scores	Frequency	Lower Boundaries	
(46) 50	5	45.5	$46-0.5=45.5$
(41) 45	6	40.5	$41-0.5=40.5$
(36)40	9	35.5	$36-0.5=35.5$
(31) 35	10	30.5	$31-0.5=30.5$
(26)30	13	25.5	$26-0.5=25.5$
(21)25	7	20.5	$21-0.5=20.5$

Step 2: Determine the cumulative frequency;

Scores	Frequency	Lower Boundaries (LB)	Cumulative Frequency
$46-50$	5	45.5	50
$41-45$	6	40.5	45
$36-40$	9	35.5	39
$31-35$	10	30.5	30
$26-30$	13	25.5	20
$21-25$	7	20.5	7

Add 45 and 5
Add 39 and 6
Add 30 and 9
Add 20 and 10
Add 7 and 13
Copied from the frequency
Step 3: Calculate the given class;
Since we are calculating Q_{3}, we will use the formula for quartile.
Given: $k=3 ; N=50$

$$
\begin{aligned}
\boldsymbol{Q}_{\boldsymbol{k}} \text { Class } & =\frac{\boldsymbol{k} \boldsymbol{N}}{\mathbf{4}} \\
Q_{3} \text { Class } & =\frac{3(50)}{4} \\
Q_{3} \text { Class } & =\frac{150}{4} \\
Q_{3} \text { Class } & =37.5
\end{aligned}
$$

This means that we need to find the class interval where $37.5^{\text {th }}$ score is obtained.
Step 4: Locate the class interval where the given class is situated; and

Scores	Frequency	Lower Boundaries (LB)	Cumulative Frequency
$46-50$	5	45.5	50
$41-45$	6	40.5	45
$36-40$	9	35.5	39
$31-35$	10	30.5	30
$26-30$	13	25.5	20
$21-25$	7	20.5	(31st-39th score)(21st-30th score) (8th-20th score) (1st-7th score)

Use the cumulative frequency in finding the $37.5^{\text {th }}$ score. Since $37.5^{\text {th }}$ score is obtained between $31^{\text {st }}$ and $39^{\text {th }}$ score, we will use the class interval 36-40.

Step 5: Calculate the value using the formula for grouped data.
Since we are calculating the value of Q_{3}, we will use the formula for quartile for grouped data.

$$
Q_{k}=L B+\left[\frac{\frac{k N}{4}-c f_{b}}{f_{Q_{k}}}\right] i
$$

where: $\quad L B=$ lower boundary of Q_{k} class
$N=$ total frequency
$c f_{b}=$ cumulative frequency of the class of the class before the Q_{k} class
$f_{Q_{k}}=$ frequency of the Q_{k} class
$i=$ size of the class interval
$k=n$th quartile, where $n=1,2$ and 3

Scores	Frequency	Lower Boundaries (LB)	Cumulative Frequency
$46-50$	5	45.5	50
$41-45$	6	40.5	45
$36-40$	9	35.5	39
$31-35$	10	30.5	\mathbf{y}
$26-30$	13	25.5	20
$21-25$	7	20.5	7

Given: $L B=35.5, k=3, N=50, c f_{b}=30, i=5, f_{Q_{3}}=9$

$$
\begin{aligned}
& Q_{3}=L B+\left[\frac{\frac{k N}{4}-c f_{b}}{f_{Q_{3}}}\right] i \\
& Q_{3}=35.5+\left[\frac{\frac{3(50)}{4}-30}{9}\right] 5 \\
& Q_{3}=35.5+\left[\frac{\frac{150}{4}-30}{9}\right] 5 \\
& Q_{3}=35.5+\left[\frac{37.5-30}{9}\right] 5 \\
& Q_{3}=35.5+\left[\frac{7.5}{9}\right] 5 \\
& Q_{3}=35.5+[0.83] 5 \\
& Q_{3}=35.5+4.15 \\
& Q_{3}=39.65
\end{aligned}
$$

Therefore, the value of Q_{3} is 39.65 .
Ex. 2. Calculate the D_{4} of the number of employees in 50 companies belonging to a certain industry.

Number of Employees	Frequency
$41-45$	10
$36-40$	4
$31-35$	8
$26-30$	12
$21-25$	11
$16-20$	5

Solutions:
Step 1: Determine the lower boundaries;
To determine the lower boundary (LB), subtract 0.5 to the smallest number per class interval.

Scores	Frequency	Lower Boundaries (LB)
(41)45	10	40.5
(36)40	4	35.5
(31) 35	8	30.5
(26)30	12	25.5
(21)25	11	20.5
(16)20	5	15.5

Step 2: Determine the cumulative frequency;

Scores	Frequency	Lower Boundaries (LB)	Cumulative Frequency		
$41-45$	10	40.5	50		
$36-40$	4	35.5	40		
$31-35$	8	30.5	36		
$26-30$	12	25.5	28		
$21-25$	11	20.5	16		
$16-20$	5	15.5	5		Add 40 and 10
:---:					
Add 26 and 4					
Add 16 and 8					
Add 5 and 11					

Step 3: Calculate the given class;
Since we are calculating D_{4}, we will use the formula for decile.
Given: $k=4 ; N=50$

$$
\begin{aligned}
\boldsymbol{D}_{\boldsymbol{k}} \text { Class } & =\frac{\boldsymbol{k} \boldsymbol{N}}{\mathbf{1 0}} \\
D_{4} \text { Class } & =\frac{4(50)}{10} \\
D_{4} \text { Class } & =\frac{200}{10} \\
D_{4} \text { Class } & =20
\end{aligned}
$$

This means that we need to find the class interval where $20^{\text {th }}$ score is obtained.
Step 4: Locate the class interval where the given class is situated; and

Scores	Frequency	Lower Boundaries (LB)	Cumulative Frequency
$41-45$	10	40.5	50
$36-40$	4	35.5	40
$31-35$	8	30.5	36
$26-30$	12	25.5	28
(29st-36th score)			
$21-25$	11	20.5	16
$16-20$	5	15.5	5
(2th-28th score)			

Use the cumulative frequency in finding the $20^{\text {th }}$ score. Since the $20^{\text {th }}$ score is obtained between $17^{\text {th }}$ and $28^{\text {th }}$ score, we will use the class interval $26-30$.

Step 5: Calculate the value using the formula for grouped data.

Since we are calculating the value of D_{4}, we will use the formula for decile for grouped data.

$$
D_{k}=L B+\left[\frac{\frac{k N}{10}-c f_{b}}{f_{D_{k}}}\right] i
$$

where: $\quad L B=$ lower boundary of D_{k} class
$N=$ total frequency
$c f_{b}=$ cumulative frequency of the class of the class before the D_{k} class
$f_{D_{k}}=$ frequency of the D_{k} class
$i=$ size of the class interval
$k=n$th decile, where $n=1,2,3,4,5,6,7,8$ and 9

Scores	Frequency	Lower Boundaries (LB)	Cumulative Frequency
$41-45$	10	40.5	50
$36-40$	4	35.5	40
$31-35$	8	30.5	36
$26-30$	12	25.5	28

Given: $L B=25.5, k=4, N=50, c f_{b}=16, i=5, f_{D_{4}}=12$

$$
\begin{aligned}
& D_{4}=L B+\left[\frac{\frac{k N}{10}-c f_{b}}{f_{D_{4}}}\right] i \\
& D_{4}=25.5+\left[\frac{\frac{4(50)}{10}-16}{12}\right] 5 \\
& D_{4}=25.5+\left[\frac{\frac{200}{10}-16}{12}\right] 5 \\
& D_{4}=25.5+\left[\frac{20-16}{12}\right] 5 \\
& D_{4}=25.5+\left[\frac{4}{12}\right] 5 \\
& D_{4}=25.5+[0.33] 5 \\
& D_{4}=25.5+1.65 \\
& D_{4}=27.15
\end{aligned}
$$

Therefore, the value of D_{3} is 27.15.

Ex. 3. Calculate the P_{80} of the Mathematics test scores of 50 students.

Scores	Frequency
$46-50$	4
$41-45$	8
$36-40$	11
$31-35$	9
$26-30$	12
$21-25$	6

Solutions:
Step 1: Determine the lower boundaries;
To determine the lower boundary (LB), subtract 0.5 to the smallest number per class interval.

Step 2: Determine the cumulative frequency;

Scores	Frequency	Lower Boundaries (LB)	Cumulative Frequency
$46-50$	4	45.5	50
$41-45$	8	40.5	46
$36-40$	11	35.5	38
$31-35$	9	30.5	27
$26-30$	12	25.5	18

Step 3: Calculate the given class;
Since we are calculating P_{80}, we will use the formula for percentile.
Given: $k=80 ; N=50$

$$
\begin{aligned}
& \boldsymbol{P}_{\boldsymbol{k}} \text { Class }=\frac{\boldsymbol{k} \boldsymbol{N}}{\mathbf{1 0 0}} \\
& P_{80} \text { Class }=\frac{80(50)}{100} \\
& P_{80} \text { Class }=\frac{4000}{100} \\
& P_{80} \text { Class }=40
\end{aligned}
$$

This means that we need to find the class interval where $40^{\text {th }}$ score is obtained.

Step 4: Locate the class interval where the given class is situated; and

Scores	Frequency	Lower Boundaries (LB)	Cumulative Frequency
$46-50$	4	45.5	50
$41-45$	8	40.5	46
(39th-46th score) $36-40$	11	35.5	38
	9	30.5	27
$26-30$	12	25.5	18
$21-25$	6	20.5	6

Use the cumulative frequency in finding the $40^{\text {th }}$ score.
Since $40^{\text {th }}$ score is obtained between $39^{\text {th }}$ and $46^{\text {th }}$ score, we will use the class interval 41-45.

Step 5: Calculate the value using the formula for grouped data.
Since we are calculating the value of P_{80}, we will use the formula for percentile for grouped data.

$$
P_{k}=L B+\left[\frac{\frac{k N}{100}-c f_{b}}{f_{P_{k}}}\right] i
$$

where: $\quad L B=$ lower boundary of P_{k} class
$N=$ total frequency
$c f_{b}=$ cumulative frequency of the class of the class before the P_{k} class
$f_{P_{k}}=$ frequency of the P_{k} class
$i=$ size of the class interval
$k=$ nth percentile, where $n=1,2, \ldots, 98$ and 99

Scores	Frequency	Lower Boundaries (LB)	Cumulative Frequency		
$46-50$	4	45.5	50		
$41-45$	8	40.5	46		
(39th-46th score) $36-40$	11	35.5	38		
	9	30.5	27		
$26-30$	12	25.5	18		
$21-25$	6	20.5	6		(28th-38th score)
:---					
(19th-27th score)					
(7th-18th score)					
(1st-6th score)					

Given: $L B=40.5, k=80, N=50, c f_{b}=38, i=5, f_{Q_{3}}=8$

$$
\begin{aligned}
& P_{80}=L B+\left[\frac{\frac{k N}{100}-c f_{b}}{f_{P_{80}}}\right] i \\
& P_{80}=40.5+\left[\frac{\frac{80(50)}{100}-38}{8}\right] 5 \\
& P_{80}=40.5+\left[\frac{\frac{4000}{100}-38}{8}\right] 5
\end{aligned}
$$

$$
\begin{aligned}
P_{80} & =40.5+\left[\frac{40-38}{8}\right] 5 \\
P_{80} & =40.5+\left[\frac{2}{8}\right] 5 \\
P_{80} & =40.5+[0.25] 5 \\
P_{80} & =40.5+1.25 \\
\boldsymbol{P}_{\mathbf{8 0}} & =\mathbf{4 1 . 7 5}
\end{aligned}
$$

Therefore, the value of P_{80} is 41.75 .

What's More

Activity 2. NOW IT'S YOUR TURN!

Complete the table below and find the quartiles, deciles and percentiles indicated below based on the given distribution table.

Grades	Frequency	Lower Boundaries	Cumulative Frequency
$96-100$	8		
$91-95$	7		
$86-90$	12		
$81-85$	9		
$76-80$	14		
$71-75$	16		
$66-70$	11		
$61-65$	8		
$56-60$	6		
$51-55$	9		

1. Q_{1}
2. D_{4}
3. P_{25}
4. P_{92}

What I Need to Remember

Quartile of Grouped Data

$$
Q_{k}=L B+\left[\frac{\frac{k N}{4}-c f_{b}}{f_{Q_{k}}}\right] i
$$

Decile of Grouped Data

$$
D_{k}=L B+\left[\frac{\frac{k N}{10}-c f_{b}}{f_{D_{k}}}\right] i
$$

$$
P_{k}=L B+\left[\frac{\frac{k N}{100}-c f_{b}}{f_{P_{k}}}\right] i
$$

Measures of Position for Grouped and Ungrouped Data

What I can do

Activity 3

The weights of the students in a certain class are the following: $69,70,72,65,80,87,66,61,68,63,71,75,50,57,56$

Calculate the following.

1. $1^{\text {st }}$ quartile
2. $7^{\text {th }}$ decile
3. $45^{\text {th }}$ percentile

Activity 4

Complete the table below and find the $3^{\text {rd }}$ quartile, $6^{\text {th }}$ decile and $72^{\text {nd }}$ percentile for the following distribution.

Class Interval	Frequency	Lower Boundaries	Cumulative Frequency
$96-100$	8		
$91-95$	7		
$86-90$	12		
$81-85$	9		
$76-80$	14		
$71-75$	16		
$66-70$	11		
$61-65$	8		
$56-60$	6		
$51-55$	9		

Assessment (Post Test)

Instructions: Read each item carefully. Choose the letter of the correct answer and write it on a separate answer sheet.

1. When the distribution is divided into hundred equal parts, each score point that describes the distribution is called \qquad .
A. Decile
B. Percentile
C. Quantile
D. Quartile
2. It refers to data that has been organized into groups known as classes.
A. Frequency Distribution
C. Grouped Data
B. Organized Data
D. Ungrouped Data
3. It is a table which shows that data arranged into different classes and the number of frequencies which fall into each class.
A. Frequency Distribution
C. Grouped Data
B. Organized Data
D. Ungrouped Data

For items 4 to 9, refer to the data below.
Given 50 multiple-choice items in Mathematics test, the scores of 15 students are the following: $44,35,23,38,48,21,18,16,28,46,22,43,21,27,22$.
4. What is the position of Q_{1} ?
A. $2^{\text {nd }}$
B. $3^{\text {rd }}$
C. $4^{\text {th }}$
D. $5^{\text {th }}$
5. What is the value of Q_{1} ?
A. 16
B. 18
C. 21
D. 22
6. What is the value of Q_{3} ?
A. 28
B. 35
C. 38
D. 43
7. What is the position of D_{6} ?
A. $11^{\text {th }}$
B. $10^{\text {th }}$
C. $9^{\text {th }}$
D. $8^{\text {th }}$
8. Calculate D_{7}.
A. 28
B. 35
C. 38
D. 43
9. Calculate P_{83}.
A. 43
B. 44
C. 46
D. 48

For items 10 to 15, refer to the data below.

Score	Frequency	Lower Boundaries	Cumulative Frequency
$46-50$	6	45.5	30
$41-45$	5	40.5	24
$36-40$	7	35.5	19
$31-35$	3	30.5	12
$26-30$	9	25.5	9

10. In solving for the $60^{\text {th }}$ percentile, the lower boundary is \qquad .
B. 25.5
B. 30.5
C. 35.5
D. 40.5
11. What class interval should be used in solving for the $3^{\text {rd }}$ quartile?
A. 26-30
B. 31-35
C. $36-40$
D. $41-45$
12. What cumulative frequency should be used in solving for the $40^{\text {th }}$ percentile?
B. 9
B. 12
C. 19
D. 24
13. Calculate the $3^{\text {rd }}$ quartile.
A. 43
B. 43.5
C. 44
D. 44.5
14. Calculate the $8^{\text {th }}$ decile.
B. 44.5
B. 45.5
C. 46.5
D. 47.5
15. Calculate the $60^{\text {th }}$ percentile.
A. 39.8
B. 38.8
C. 37.8
D. 36.8

Answer Key

Remember：This portion of the module contains all the answers．Your HONESTY is required．

6	S．0S	6	SS－IS
SI	S．SS	9	09－9S
$\varepsilon 乙$	S．09	8	S9－19
† ε	S．99	I I	0L－99
OS	S．0L	9 I	SL－IL
†9	S＊S	†I	08－92
EL	S．08	6	S8－18
S8	S．98	ZI	06－98
Z6	S．06	L	S6－I6
00I	S．96	8	00I－96
Kouənbery 		Kouonbors	sopex

${ }^{\dagger} \downarrow \mathcal{E}=\varepsilon$ ठ ‘әдодәдәч L
$\downarrow \varepsilon=\varepsilon \varepsilon+\mathrm{I}: \varepsilon$ də7S
$\mathrm{I}=\left(\mathrm{S}^{*} 0\right) \mathrm{Z}: 乙$ dəみS
$Z=\varepsilon \varepsilon-\mathrm{s} \varepsilon: \mathrm{I}$ də S S ：әұејоdıәұиі

$$
\begin{aligned}
S^{\prime} \angle & ={ }^{\varepsilon} \partial \\
\frac{\hbar}{0 \varepsilon} & ={ }^{\varepsilon} \partial \\
(0 \tau) \frac{\hbar}{\varepsilon} & ={ }^{\varepsilon} \partial \\
(I+6) \frac{\hbar}{\varepsilon} & ={ }^{\varepsilon} \partial
\end{aligned}
$$

$\varepsilon_{0}^{\circ} \quad 乙$

$$
\begin{aligned}
& \mathrm{s}^{\prime} I Z=0 Z+\mathrm{s}^{\prime} I: \varepsilon \text { dәт } \\
& \mathrm{s}^{\prime} \mathrm{I}=\left(\mathrm{s}^{*} 0\right) \varepsilon: 乙 \text { dəł } \mathrm{S} \\
& \varepsilon=0 Z-\varepsilon z: I \text { də } \mathrm{S} \\
& \text { :әұегодıәұи }
\end{aligned}
$$

$$
S\left[\frac{L}{S 8-Z 6}\right]+S^{\circ} 06={ }^{26} d
$$

$$
\mathrm{s}\left[\frac{L}{S 8-\frac{00 \tau}{00 Z 6}}\right]+\mathrm{S}^{\circ} 06={ }^{26}{ }_{d}
$$

$$
\mathrm{S}\left[\frac{L}{\mathrm{~S} 8-\frac{00 \mathrm{~L}}{(00 \mathrm{I}) Z 6}}\right]+\mathrm{S}^{\prime} 06={ }^{{ }^{26}}{ }_{d}
$$

$$
?\left[\frac{{ }^{{ }^{2}{ }_{d} f}}{q_{f} f-\frac{00 \boxed{ }}{N^{y}}}\right]+g 7={ }^{z 6} d
$$

${ }^{26} \mathrm{~d} \cdot \downarrow$

$$
{ }^{\varsigma} \tau_{d} \cdot \varepsilon
$$

$$
\boldsymbol{t}^{\prime} Z L={ }^{\dagger} \boldsymbol{\sigma}
$$

$$
6^{\circ} I+S^{\prime} 0 L={ }^{ \pm} G
$$

$$
\mathrm{s}\left[8 \varepsilon^{*} 0\right]+\mathrm{s}^{*} 0 L={ }^{\dagger} G
$$

$$
\mathrm{s}\left[\frac{9 L}{9}\right]+\mathrm{s}^{\prime} 0 L={ }^{\dagger} a
$$

$$
\mathrm{s}\left[\frac{9 \mathrm{I}}{\nabla \varepsilon-0 \downarrow}\right]+\mathrm{s}^{\circ} 0 L={ }^{ \pm} G
$$

$$
\mathrm{S}\left[\frac{9 \mathrm{I}}{ \pm \varepsilon-\frac{0 I}{00 t}}\right]+\mathrm{S}^{\prime} 0 L={ }^{\dagger} G
$$

$$
\mathrm{s}\left[\frac{9 \mathrm{~L}}{ \pm \varepsilon-\frac{0 \tau}{(00 \tau) \succsim}}\right]+\mathrm{s}^{\prime} 0 L={ }^{\dagger} G
$$

$$
?\left[\frac{{ }^{\downarrow} a f}{q_{f} \Omega-\frac{0 \tau}{N^{4}}}\right]+q 7={ }^{\downarrow} a
$$

${ }^{\dagger}{ }^{\circ}$ ` Z

$$
\begin{aligned}
& \boldsymbol{t} \mathbf{9 9}={ }^{\boldsymbol{I}} \boldsymbol{\partial} \\
& 60+\mathrm{S}^{\circ} \mathrm{s} 9={ }^{\mathrm{I}} \partial \\
& \mathrm{~s}\left[8 \tau^{\circ} 0\right]+\mathrm{s}^{\circ} \mathrm{S} 9={ }^{\mathrm{L}} \text { ర } \\
& S\left[\frac{L L}{Z}\right]+S^{\prime} S 9={ }^{\mathrm{L}} \partial \\
& \varsigma\left[\frac{L I}{\varepsilon Z-\varsigma Z}\right]+\mathrm{S} \varsigma 9={ }^{\mathrm{L}} \partial \\
& \mathrm{~s}\left[\frac{I I}{\varepsilon Z-\frac{\hbar}{00 \tau}}\right]+\mathrm{S} \cdot \mathrm{~S} 9={ }^{\mathrm{I}} \partial \\
& s\left[\frac{\tau I}{\varepsilon Z-\frac{\tau}{(00 \tau) \tau}}\right]+\mathrm{s} \cdot \mathrm{~s} 9={ }^{\mathrm{I}} \partial \\
& ?\left[\frac{{ }^{\tau} \partial}{q^{q} f \partial-\frac{\nabla}{N^{Y}}}\right]+G 7={ }^{\tau} \partial
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{*} \cdot 99={ }^{\mathrm{s} z}{ }_{\boldsymbol{d}} \\
& 6.0+\mathrm{s}^{\circ} \mathrm{s} 9={ }^{\mathrm{s} z_{d}} \\
& \mathrm{~s}\left[8\left[{ }^{\circ} 0\right]+\mathrm{s} \mathrm{~s}^{\prime} 9={ }^{\mathrm{s}}{ }_{d}\right. \\
& \mathrm{s}\left[\frac{[\mathrm{~L}}{Z}\right]+\mathrm{c}^{\circ} \mathrm{s} 9={ }^{\mathrm{s} z_{d}} \\
& \mathrm{~s}\left[\frac{I I}{\varepsilon Z-\mathrm{s} Z}\right]+\mathrm{s}^{\prime} \mathrm{s} 9={ }^{\mathrm{sz}}{ }_{d} \\
& \varsigma\left[\frac{L I}{\varepsilon Z-\frac{00 \tau}{00 \mathrm{SZ}}}\right]+\mathrm{S} \mathrm{~S} 9=\mathrm{sz}{ }_{d} \\
& \mathrm{~S}\left[\frac{\tau \tau}{\varepsilon Z-\frac{00 \tau}{(00 \tau) \mathrm{Sz}}}\right]+\mathrm{S}^{\prime} \mathrm{S} 9={ }^{\mathrm{sz}}{ }_{d} \\
& ?\left[\frac{{ }^{s z_{d}} f}{q^{q} \rho-\frac{00 \mathrm{~L}}{N^{y}}}\right]+g 7={ }^{\mathrm{s} z_{d}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{S} \angle \mathbf{S} \mathbf{6}={ }^{\mathbf{Z 6}} \boldsymbol{d} \\
& \mathrm{S}+\mathrm{S}^{\prime} 06={ }^{26}{ }_{d} \\
& \mathrm{~s}[\mathrm{~L}]+\mathrm{s}^{\circ} 06={ }^{26}{ }_{d} \\
& \mathrm{~S}\left[\frac{L}{L}\right]+\mathrm{S}^{\prime} 06={ }^{26}{ }_{d}
\end{aligned}
$$

References

Books

Bernabe, Julieta G., Maricel C. Corpuz, Ricardo M. Crisostomo, Soledad J. Dilao, Michael Lee, Alicia L. Padua, and Rommel S. Quiming. 2014. Our World of Math 10. Quezon City: Vibal Group Inc.
Chu, Tom N. 2015. Mathematics for the 21st Century Learner. Makati City. Diwa Learning Systems Inc.

Images

Children Thinking Clipart
Retrieved August 28,2020 from
https://101clipart.com/children-thinking-clipart/

Avatars

The avatars used in this module are created using Bitmoji application.

Congratulations!

You are now ready for the next module. Always remember the following:

1. Make sure every answer sheet has your

- Name
- Grade and Section
- Title of the Activity or Activity No.

2. Follow the date of submission of answer sheets as agreed with your teacher.
3. Keep the modules with you and return them at the end of the school year or whenever face-to-face interaction is permitted.
